Vilnius University

Institute of Data Science and Digital Technologies

Importance of optimization techniques for the social sciences

Authors: Linas Stripinis, dr. Remigijus Paulavičius, prof. dr. (HP) Julius Žilinskas

Modelling and Simulation of Social-Behavioural Phenomena in Creative Societies September 18–20, 2019 Vilnius, Lithuania

Vilnius University

Institute of Data Science and Digital Technologies

Motivation

- Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181.
- Popular Google scholar: 1918 citations (2019/09/08)

Vilnius University

Institute of Data Science and Digital Technologies

Motivation

- Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993).
 Lipschitzian optimization without the Lipschitz constant.
 Journal of Optimization Theory and Applications, 79(1):157–181.
- Popular Google scholar: 1918 citations (2019/09/08)
- Simple and has only one algorithmic parameter ε that needs to be adjusted to make the algorithm work well on a given problem.

Vilnius University

Institute of Data Science and Digital Technologies

Motivation

- Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993).
 Lipschitzian optimization without the Lipschitz constant.
 Journal of Optimization Theory and Applications, 79(1):157–181.
- Popular Google scholar: 1918 citations (2019/09/08)
- Simple and has only one algorithmic parameter ε that needs to be adjusted to make the algorithm work well on a given problem.
- Converge to the global optimum, if the objective function is continuous or at least continuous in the neighbourhood of a global optimum.

Vilnius University

Institute of Data Science and Digital Technologies

Motivation

- Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181.
- Popular Google scholar: 1918 citations (2019/09/08)
- Simple and has only one algorithmic parameter ε that needs to be adjusted to make the algorithm work well on a given problem.
- Converge to the global optimum, if the objective function is continuous or at least continuous in the neighbourhood of a global optimum.
 - Suitable for black-box optimization.
 - 1 Box constraints.
 - 2 General constrains.
 - 3 Hidden constraints.

Vilnius University

Institute of Data Science and Digital Technologies

Outline

DIRECT for box-constrained global optimization

Global Optimization Problem DIRECT algorithm main steps DIRECT, DIRECT-G, DIRECT-L DIRECT-GL Numerical investigation

DIRECT for general constrained global optimization

Global Optimization Problem Exact L1 penalty function DIRECT-GLc DIRECT-GLce Numerical investigation

Accelerating DIRECT algorithms

Data structures Parallel scheme of pDIRECT-GLce Numerical investigation

Vilnius University

Institute of Data Science and Digital Technologies

Global (Lipschitz) Optimization Problem (GOP)

Objective function f satisfies the Lipschitz condition

 $|f(\mathbf{x}) - f(\mathbf{y})| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \mathbf{x}, \mathbf{y} \in \mathbb{D}, \quad 0 < L < \infty,$

with unknown Lipschitz constant L.

Vilnius University

Institute of Data Science and Digital Technologies

DIRECT algorithm: main steps

1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{\mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \dots, n\}$

Vilnius University

Institute of Data Science and Digital Technologies

DIRECT algorithm: main steps

1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{ \mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, ..., n \}$ 2 step: Evaluate f at • - the center point $c \in \overline{\mathbb{D}}$

Vilnius University

Institute of Data Science and Digital Technologies

DIRECT algorithm: main steps

- 1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{\mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \dots, n\}$
- 2 step: Evaluate f at \bullet the center point $c \in \overline{\mathbb{D}}$
- 3 step: Identify (and select) potentially optimal hyper-rectangles

Vilnius University

Institute of Data Science and Digital Technologies

DIRECT algorithm: main steps

- 1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{\mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \dots, n\}$
- 2 step: Evaluate f at \bullet the center point $c \in \overline{\mathbb{D}}$
- 3 step: Identify (and select) potentially optimal hyper-rectangles
- 4 step: Sample f at the points \bullet $c \pm \delta$ (where $\delta = 1/3$ maximal side length)

Vilnius University

Institute of Data Science and Digital Technologies

DIRECT algorithm: main steps

- 1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{\mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \dots, n\}$
- 2 step: Evaluate f at \bullet the center point $c \in \overline{\mathbb{D}}$
- 3 step: Identify (and select) potentially optimal hyper-rectangles
- 4 step: Sample f at the points - $c \pm \delta$ (where $\delta = 1/3$ maximal side length) and divide (trisect) along all dimensions with the maximum side length.

Vilnius University

Institute of Data Science and Digital Technologies

DIRECT algorithm: main steps

- 1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{\mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \dots, n\}$
- 2 step: Evaluate f at \bullet the center point $c \in \overline{\mathbb{D}}$
- 3 step: Identify (and select) potentially optimal hyper-rectangles
- 4 step: Sample f at the points - $c \pm \delta$ (where $\delta = 1/3$ maximal side length) and divide (trisect) along all dimensions with the maximum side length.

Repeat: 3-4 Steps until satisfied some stopping criteria.

Vilnius University

Institute of Data Science and Digital Technologies

Schemes for selection of potentially optimal hyper-rectangles

Vilnius University

Institute of Data Science and Digital Technologies

Potentially optimal hyper-rectangles (POH) in **DIRECT**

Definition 1 (Potentially optimal hyper-rectangles)

Let \mathbf{c}^i denote the center sampling point and δ_i be a measure (distance, size) of the hyper-rectangle D_k^i . Let $\varepsilon > 0$ be a positive constant and f_{\min} be the best currently known value of the objective function. A hyper-rectangle D_k^j , $j \in \mathbb{I}_k$ is said to be potentially optimal if there exists some rate-of-change (Lipschitz) constant $\tilde{L} > 0$ such that

$$\begin{array}{rcl} f(\mathbf{c}^{i}) - \tilde{L}\delta_{j} &\leq & f(\mathbf{c}^{i}) - \tilde{L}\delta_{i}, \quad \forall i \in \mathbb{I}_{k}, \ (1) \\ f(\mathbf{c}^{i}) - \tilde{L}\delta_{j} &\leq & f_{\min} - \varepsilon |f_{\min}|, \end{array}$$

where the measure of the hyper-rectangle is

$$\delta_i = \frac{1}{2} \| \mathbf{b}^i - \mathbf{a}^i \|_2. \tag{3}$$

Geometric interpretation on Shekel 5 test problem in the fifth iteration

Vilnius University

Institute of Data Science and Digital Technologies

New selection strategy for POH in proposed **DIRECT-G**

Definition 2 (Potentially optimal hyper-rectangles)

• Step 1 Find an index $j \in \mathbb{I}_k$ and a corresponding hyper-rectangle D_k^j , such that

$$D_k^j = \arg\max_j \{l_k^j : j = \arg\min_{i \in \mathbb{I}_k : \ l_k^{\min} \le l_k^j \le l_k^{\max}} \{f(\mathbf{c}^i)\}\}.$$
(4)

Step 2 Set *I*_k^{min} = *I*_k^j + 1. If *I*_k^j ≤ *I*_k^{max} repeat from Step 1; otherwise terminate.

Geometric interpretation on Shekel 5 test problem in the fifth iteration

Vilnius University

Institute of Data Science and Digital Technologies

New selection strategy for POH in proposed **DIRECT-L**

Definition 3 (Potentially optimal hyper-rectangles)

 Step 1 At each iteration k, evaluate the Euclidean distance from the current minimum point (x^{min}) to other sampled points:

$$d(\mathbf{x}^{\min}, \mathbf{c}^{i}) = \sqrt{\sum_{j=1}^{n} (x_{j}^{\min} - c_{j}^{i})^{2}} \quad (5)$$

 Step 2 Apply the procedure described in Definition 3 in (4) using distances d(x^{min}, cⁱ) instead of objective function values.

Geometric interpretation on Shekel 5 test problem in the fifth iteration

Vilnius University

Institute of Data Science and Digital Technologies

Pseudo code of the DIRECT-GL algorithm

- 1 step: Scale $\mathbb{D} \to \overline{\mathbb{D}} = \{ \mathbf{x} \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \dots, n \}.$
- 2 step: Sample the center point $c_1 \in \overline{\mathbb{D}}$ of first hyper-rectangle and evaluate $f(c_1)$. Initialize $f_{\min} = f(c_1)$, $x_{\min}c_1$ set (function evaluation counter) m = 1 and (iteration counter) k = 1. Set $\mathbb{J}_1 = 1$.
- 3 step: Identify the index set $\mathbb{J}_k^1 \subseteq \mathbb{I}_k$ of potentially optimal hyper-rectangles using **Definition 2**. (**DIRECT-G** selection procedure)
- 4 step: Subdivide (trisect) all hyper-rectangles from \mathbb{J}_k^1 and update \mathbb{I}_k . Evaluate f at the centers of new hyper-rectangles. Update f_{\min} , x_{\min} and m.
- 5 step: Identify the index set $\mathbb{J}_k^1 \subseteq \mathbb{I}_k$ of potentially optimal hyper-rectangles using **Definition 3**. (**DIRECT-L** selection procedure)
- 6 step: Subdivide (trisect) all hyper-rectangles from \mathbb{J}_k^1 and update \mathbb{I}_k . Evaluate f at the centers of new hyper-rectangles. Update f_{\min} , x_{\min} and m.
- **Repeat:** Set k = k + 1. If stopping criteria are met, stop; otherwise go to step 3.

Stripinis, L., Paulavičius, R., Žilinskas J. (2017). Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT. Optimization Letters 12(7), 1699–1712. DOI 10.1007/s11590-017-1228-4

Vilnius University

Institute of Data Science and Digital Technologies

Test problems and stopping conditions

 Since all the global minima f* are known for all Hedar test problems in advance, investigated algorithms were stopped either when the point x̄ was generated such that the percent error

$$pe = 100\% \times \begin{cases} \frac{f(\bar{\mathbf{x}}) - f^*}{|f^*|}, & f^* \neq 0, \\ f(\bar{\mathbf{x}}), & f^* = 0, \end{cases}$$
(6)

is smaller than the tolerance value $\varepsilon_{\rm pe}$, or when the number of function evaluations exceeds the prescribed limit of 10^6 .

• In our investigation, four different values for $\varepsilon_{\rm pe}$ were considered: $10^{-2},\,10^{-4},\,10^{-6},\,10^{-8}.$

Hedar, A. (2005).

Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/ member/student/hedar/Hedar files/TestGO.htm.

Vilnius University

Institute of Data Science and Digital Technologies

Unsolved test problems and average of function evaluations

Alg./ $arepsilon_{ m pe}$	10^{-2}	10^{-4}	10^{-6}	10^{-8}	Total
DIRECT	9/54	11/54	18/54	26/54	64/216
DIRECT-G	8/54	9/54	10/54	12/54	39/216
DIRECT-L	11/54	13/54	13/54	15/54	52/216
DIRECT-GL	4/54	4/54	6/54	6/54	20/216

Table: Unsolved test problems

Table: Average of function evaluations

Alg./ $arepsilon_{ m pe}$	10^{-2}	10^{-4}	10^{-6}	10^{-8}
DIRECT	184,591	236,891	369,800	493,577
DIRECT-G	199,253	211,822	235,896	263,322
DIRECT-L	226,023	265,436	277,382	298,068
DIRECT-GL	114,887	150,622	170,131	186,799

Institute of Data Science and Digital Technologies

Average of function evaluations solving unimodal and multimodal test problems

Table: Average of function evaluations for unimodal test problems

Alg./ $arepsilon_{ m pe}$	10^{-2}	10^{-4}	10 ⁻⁶	10 ⁻⁸
DIRECT	115,099	126,330	170,648	176,480
DIRECT-G	195,439	199,961	207,523	220,482
DIRECT-L	373,655	374,537	376,095	378,051
DIRECT-GL	194,300	202,406	214,502	228,328

Table: Average of function evaluations for multimodal test problems

Alg./ $arepsilon_{ m pe}$	10^{-2}	10^{-4}	10^{-6}	10^{-8}
DIRECT	208,913	275,588	439,503	604,561
DIRECT-G	200,588	215,973	245,826	278,316
DIRECT-L	174,351	227,251	242,832	270,074
DIRECT-GL	87,092	132,498	154,601	172,263

Institute of Data Science and Digital Technologies

Average of function evaluations solving $n \leq 3$ and $n \geq 4$ test problems

	Table: Av	erage of	function	evaluations	for	test	problems	with	$n \leq$	3
--	-----------	----------	----------	-------------	-----	------	----------	------	----------	---

Alg./ $\varepsilon_{ m pe}$	10^{-2}	10^{-4}	10 ⁻⁶	10^{-8}
DIRECT	2,290	3,828	25,335	262,245
DIRECT-G	15,760	15,942	16,246	16,685
DIRECT-L	1,480	1,666	1,905	2,278
DIRECT-GL	509	759	1,064	1,533

Table: Average of function evaluations for test problems with $n \ge 4$

Alg./ $arepsilon_{ m pe}$	10^{-2}	10^{-4}	10^{-6}	10^{-8}
DIRECT	319,846	409,809	625,371	665,211
DIRECT-G	335,394	357,192	398,862	446,311
DIRECT-L	392,619	461,136	481,767	517,525
DIRECT-GL	199,748	261,812	295,568	324,254

Vilnius University

Institute of Data Science and Digital Technologies

Global (Lipschitz) Optimization Problem (GOP)

All functions f, g_i, h_j satisfies the Lipschitz condition

 $|f(\mathbf{x}) - f(\mathbf{y})| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \mathbf{x}, \mathbf{y} \in \mathbb{D}, \quad 0 < L < \infty,$

with unknown Lipschitz constant L.

Vilnius University

Institute of Data Science and Digital Technologies

Exact L1 penalty function approach

An exact L1 penalty approach is a transformation of the original constrained problem to the form:

$$\min_{\mathbf{x}\in D} f(\mathbf{x}) + \sum_{i=1}^{m} \max\{p_i g_i(\mathbf{x}), 0\} + \sum_{i=1}^{r} p_{i+m} |h_i(\mathbf{x})|,$$
(7)

where $\ensuremath{p_i}$ - penalty parameters.

Linas Stripinis

Vilnius University

Institute of Data Science and Digital Technologies

Constrained test problems

Comparison of Exact L1 penalty function using different POH: our scheme vs original

Stopping conditions:

- 1 cond.: When the point $\bar{\bf x}$ was generated such that the percent error $\varepsilon_{\rm pe}$ is smaller than the $10^{-2}.$
- 2 cond.: When the number of function evaluations exceeds the prescribed limit of 10^6 .

Table: Results solving problems with general constraints

	DIRECT-GL-L1			DIRECT-L1		
#	p=10	$p = 10^{2}$	$p = 10^{3}$	p=10	$p = 10^{2}$	$p = 10^{3}$
Aver.(overall)	516,137	418,516	312,676	636,793	682,036	705,836
Aver. $(n \leq 3)$	443,498	241,614	42,175	526,485	409,504	494,361
Aver. $(n \ge 4)$	580,337	547,705	520,763	705,260	879,914	853,840
Aver.(lin.cons.)	398,612	308,194	158,096	528,508	612,280	650,601
Aver.(nonlin.cons.)	692,335	558,644	520,906	764,540	752,595	754,704
U.prob.(total)	28/56	21/56	15/56	34/56	37/56	38/56
U.prob.(infes.sol.)	19/28	11/21	5/15	17/34	12/37	7/38
U.prob.(exc.fun.eval.)	9/28	10/21	10/15	17/34	25/37	31/38

DIRECT-GLc: Case when initial point(s) is/are infeasible

Next extension for problems with constraints. Minimize sum of constraint violations:

$$\min_{\mathbf{x}\in D}\varphi(\mathbf{x}),\tag{8}$$

Institute of Data Science and Digital Technologies

where

$$\varphi(\mathbf{x}) = \sum_{i=1}^{m} \max\{p_i g_i(\mathbf{x}), 0\} + \sum_{i=1}^{r} p_{i+m} |h_i(\mathbf{x})|, \qquad (9)$$

until a feasible point $\mathbf{x} \in D$ is found, i.e., such that (9) is zero. Penalty parameters p_i are simply set to 1.

Institute of Data Science and Digital Technologies

DIRECT-GLc: Find at least one feasible point

Table: The number of function evaluations needed by algorithms to find a feasible point

	DI	RECT-GL	-L1	C	DIRECT-L	1	DIRECT-GLc
#	p=10	$p = 10^{2}$	$p = 10^{3}$	p=10	$p = 10^{2}$	$p = 10^{3}$	
G01	4,340	4,036	4,340	4,626	4,244	4,776	4,050
G03	4,037	3,393	1,413	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	1,381
G05	8,635	5,507	6,331	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	6,329
G06	1,431	575	122	1,521	547	112	102
G07	847	1,318	1,660	449	531	813	927
G10	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$	3,394
NASA speed	$> 10^{6}$	$> 10^{6}$	5,019	99.515	77,051	5,561	167
reducer design							
problem							
P01	$> 10^{6}$	2,373	5,009	$> 10^{6}$	5,273	8,021	4,165
Reactor net-	5,506	5,484	5,484	45,558	33,026	34,968	5,418
work design							

Institute of Data Science and Digital Technologies

DIRECT-GLc: Penalizing objective values obtained at infeasible points

By the second extension, we transform problem (7) to (10):

$$\min_{\mathbf{x}\in D} f(\mathbf{x}) + \xi(\mathbf{x}, f_{\min}^{\text{feas}}),$$

$$\xi(\mathbf{x}, f_{\min}^{\text{feas}}) = \begin{cases} 0, & \mathbf{x} \in D^{\text{feas}} \\ \varphi(\mathbf{x}) + \Delta, & \text{otherwise,} \end{cases}$$
(10)

where f_{\min}^{feas} - current best feasible solution and \mathbb{D}^{feas} is set of points which satisfies constraints. $\Delta = |f(\mathbf{x}) - f_{\min}^{\text{feas}}|$, which is equal to absolute value of the difference between the best feasible function value found so far f_{\min}^{feas} and the objective value at an infeasible center point.

Institute of Data Science and Digital Technologies

Comparison of **DIRECT-GLc** with previous versions

Stopping conditions:

- 1 cond.: When the point $\bar{\mathbf{x}}$ was generated such that the percent error $\varepsilon_{\rm pe}$ is smaller than the 10^{-2} .
- 2 cond.: When the number of function evaluations exceeds the prescribed limit of 10^6 .

	DIRECT-GL-L1	DIRECT-L1	DIRECT-GLc
#	p=10 ³	p=10	
Aver.(overall)	312,676	636,793	240,727
Aver. $(n \leq 3)$	42,175	526,485	2,283
Aver. $(n \ge 4)$	520,763	705,260	433,021
Aver.(lin.cons.)	158,096	528,508	125,135
Aver.(nonlin.cons.)	520,906	764,540	406,577
U.prob.(total)	15/56	34/56	12/56
U.prob.(infes.sol.)	5/15	17/34	0/12
U.prob.(exc.fun.eval.)	10/15	17/34	12/12

Table: Results solving problems with general constraints

DIRECT-GLce: adding small tolerance for constraints

By third extension we update problem (10) to form (11):

$$\begin{split} \min_{\mathbf{x}\in D} f(\mathbf{x}) &+ \tilde{\xi}(\mathbf{x}, f_{\min}^{\text{feas}}), \\ \tilde{\xi}(\mathbf{x}, f_{\min}^{\text{feas}}) &= \begin{cases} 0, & \mathbf{x} \in D^{\text{feas}} \\ 0, & \mathbf{x} \in D_{\varepsilon_{\text{cons}}}^{\text{inf}} \\ \varphi(\mathbf{x}) + \Delta, & \text{otherwise,} \end{cases} \end{split}$$
(11)

where $D_{\varepsilon_{\text{cons}}}^{\inf} = \{\mathbf{x} : f(\mathbf{x}) \leq f_{\min}^{\text{feas}}, 0 < \sum_{i=1}^{m} \max\{g_i(\mathbf{x}), 0\} \leq \varepsilon_{\text{cons}}, \mathbf{x} \in D\}$ and $\varepsilon_{\text{cons}}$ is a small tolerance for constraint function sum, which automatically varies during the optimization process.

5 iteration

Vilnius University

Institute of Data Science and Digital Technologies

Geometric interpretation of **DIRECT-GLce** algorithm

6 iteration

1

Vilnius University

Institute of Data Science and Digital Technologies

Geometric interpretation of DIRECT-GLce algorithm

8 iteration

Comparison of **DIRECT-GLce** with previous versions

Stopping conditions:

- 1 cond.: When the point $\bar{\bf x}$ was generated such that the percent error $\varepsilon_{\rm pe}$ is smaller than the $10^{-2}.$
- 2 cond.: When the number of function evaluations exceeds the prescribed limit of 10^6 .

Table: Results solving problems with general constraints

#	DIRECT-GL-L1 p=10 ³	DIRECT-L1 p=10	DIRECT-GLc	DIRECT-GLce
Aver.(overall)	312,676	636,793	240,727	153,341
Aver $(n \leq 3)$	42,175	526,485	2,283	4,331
Aver. $(n \ge 4)$	520,763	705,260	433,021	273,510
Aver.(lin.cons.)	158,096	528,508	125,135	78,962
Aver.(nonlin.cons.)	520,906	764,540	406,577	260,058
U.prob.(total)	15/56	34/56	12/56	3/56
U.prob.(infes.sol.)	5/15	17/34	0/12	0/3
U.prob.(exc.fun.eval.)	10/15	17/34	12/12	3/3

Institute of Data Science and Digital Technologies

Comparison with other DIRECT-type algorithms

Steps	DIRECT-L1	eDIRECTc	Filter Direct	DIRECT-GLce
Selection of po- tentially optimal hyper-rectangles (POH)	Original DIRECT strategy	Novel DIRECT-type constraint-handling technique that separ- ately handles feasible and infeasible cells	Modified strategy, uses three sets: one from feasible, one from in- feasible non-dominated and one from infeasible dominated points	Uses two step selec- tion procedure from DIRECT-GL algorithm
Partitioning scheme	Original DIRECT tri- section strategy	Based on Voronoi dia- grams for partition the design space in Voronoi cells	Trisection strategy us- ing the rules of "prefer- ence point" and "pref- erence order" described in Definition 5 in their paper	Original DIRECT tri- section strategy
Local minimization procedure	-	In MATLAB implementa- tion uses fmincon	-	Only in the version: DIRECT-GLce+
Input parameters	Balance parameter ϵ , penalty parameters p_i	Balance parameter ϵ , allowed equality con- straints violation ε_{φ}	Balance parameter ϵ , filter control paramet- ers	Allowed equality constraints violation ε_{φ}

M. F. P. Costa and A. M. A. C. Rocha and E. M. G. P. Fernandes (2017).

Filter-based direct method for constrained global optimization. Journal of Global Optimization in press (2017). DOI 10.1007/s10898-017-0596-8.

Liu, H., Xu, S., Chen, X., Wang, X., Ma, Q. (2017).

Constrained global optimization via a direct-type constraint-handling technique and an adaptive metamodeling strategy. Structural and Multidisciplinary Optimization 55(1), 155–177 (2017). DOI 10.1007/s00158-016-1482-6.

Institute of Data Science and Digital Technologies

Comparative analysis with Filter DIRECT

Table: Comparison between algorithms on 20 test problems

	Filter	DIRECT	DIF	RECT-GLce
Label	f_{evl}	f_{\min}	f _{evl}	f_{\min}
P01	25, 425	0.398895	117, 367	0.029367
P02(a)	697, 169	-22.44495	200,000	-397.147651
P02(b)	421, 197	53.68674	200,000	-397.146850
P02(c)	724, 337	-38.79484	200,000	-701.483390
P02(d)	16,715	-399.96613	54, 769	-399.966130
P03(a)	1, 109, 995	-0.38317	117,665	-0.388737
P03(b)	347	-0.38888	985	-0.388736
P04	543	-6.66621	1,949	-6.666209
P05	1,009	201.159343	819	201.159319
P06	1, 323	376.300244	1,791	376.306243
P07	1,417	-2.828227	2,705	-2.828227
P08	883	-118.700976	1,947	-118.689820
P09	2, 203	-13.401764	8,271	-13.401411
P10	587	0.741833	2,455	0.741833
P11	5	-0.500000	11	-0.500000
P12	6665	-16.738797	23	-16.738069
P13	10, 583	195.339906	41, 431	189.357806
P14	1,967	-4.513963	9,409	-4.513921
P15	105	0.000000	181	0.000000
P16	151	0.705001	97	0.704964
Average		151, 131		48,094
# of uns	olved	5		3

Institute of Data Science and Digital Technologies

Comparative analysis with eDIRECT-C

#	Criteria	eDIRECT-C	DIRECT-GLce	DIRECT-GLce+min
G01	f.	-14 9998	-14 9991	-15 0000
001	f ,	147.4	787 405	4 153
C02	f	-0.2480	-0.2246	-0.3148
002	/min	-0.2400	-0.2240	-0.5140
C02	^l evl	> 1,000.0	1 0004	> 10
G03	¹ min	-0.9989	-1.0004	-1.0004
604	revl	145.4	251, 547	251, 547
G04	tmin	-30, 665.5385	-30,663.5708	-30, 005.5387
	fevl	64.6	21,355	25
G05	tmin	5, 145.8149	5126.5089	5, 126.4967
	fevl	412.80	6,861	5,629
G06	f_{\min}	-6,961.8137	-6,961.1798	-6, 961.8139
	fevl	34.8	6,017	129
G07	f_{\min}	24.3062	24.3332	24.3062
	fevl	152.4	$> 10^{6}$	1, 161
G08	f_{\min}	-0.095822	-0.095818	-0.095825
	fevl	154.2	1,507	115
G09	f_{\min}	785.6795	680.6928	680.6301
	fevi	> 1,000.0	89,301	41
G10	fmin	7,049.2484	7,049.8749	7,049.2480
	fevi	104.8	561,857	3,607
G11	fmin	0.7499	0.7499	0.7499
	f1	33.4	1,929	447
G12	f	-1,0000	-0.9999	-1 0000
012	f 1	52.0	85	17
G13	f .	0 6472	0 05394	0 05394
015	f ,	> 1,000,0	458 239	100 171
	'evi	/ 1,000.0	+50, 255	100, 171
U.pr.		5	2	1
1.1		-		

Table: Comparison of different algorithms for 13 test problems

Institute of Data Science and Digital Technologies

Comparative analysis with eDIRECT-C

Table: Results of different algorithms for engineering problems

Algorithm	Solution point x*	f _{min}	f _{evl}			
NASA speed reducer design problem						
eDIRECTc DIRECT-GLce DIRECT-GLce+min	3.50000, 0.70000, 17.00000, 7.30000, 7.71532, 3.35022, 5.28665 3.50034, 0.70000, 17.00002, 7.30007, 7.80003, 3.35046, 5.28673 3.50000, 0.70000, 17.00000, 7.30000, 7.80000, 3.35021, 5.28668	2994.4711 ^a 2996.5498 2996.3481	118 110,387 233			
Pressure vessel design problem						
eDIRECTc DIRECT-GLce DIRECT-GLce+min	1.00000, 0.62500, 51.81347, 84.57855 1.10007, 0.62503, 56.99779, 50.99159 1.100000, 0.625000, 56.99481, 51.00125	7006.7816 ^a 7164.3701 7163.7395	412 129,097 73			
Tension/compression spring design problem						
eDIRECTc DIRECT-GLce DIRECT-GLce+min	0.05169, 0.35674, 11.28819 0.05183279987, 0.36018518518, 11.1025880577 0.05169590656, 0.35688327343, 11.2933789329	0.012666 ^a 0.012679 0.012678	292 20,845 11			
Three-bar truss design problem						
eDIRECTc DIRECT-GLce DIRECT-GLce+min	0.78868, 0.40825 0.78395, 0.42181 0.78868, 0.40825	263.8958 263.9158 263.8958	26 1,331 11			
a result is outside the feasible region						

Vilnius University

Institute of Data Science and Digital Technologies

Static data structure (SDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

Vilnius University Institute of Data Science and Digital Technologies

Static data structure (SDS) implementation in the DIRECT

- 0 Iter.: Evaluate hyper-rectangle at the center point and store information.
- 1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle $[I_1]$ and store information.

Static data structure (SDS) implementation in the DIRECT

- 0 Iter.: Evaluate hyper-rectangle at the center point and store information.
- 1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle $[I_1]$ and store information.
- 2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles $[I_2, I_4]$ and store information.

Static data structure (SDS) implementation in the DIRECT

- 0 Iter.: Evaluate hyper-rectangle at the center point and store information.
- 1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle $[I_1]$ and store information.
- 2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles $[I_2, I_4]$ and store information.

3 Iter.:

Vilnius University

Institute of Data Science and Digital Technologies

Dynamic data structure (DDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

Vilnius University Institute of Data Science and Digital Technologies

Dynamic data structure (DDS) implementation in the DIRECT

- 0 Iter.: Evaluate hyper-rectangle at the center point and store information.
- 1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle $[I_1]$ and store information.

Dynamic data structure (DDS) implementation in the DIRECT

- 0 Iter.: Evaluate hyper-rectangle at the center point and store information.
- 1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle $[I_1]$ and store information.
- 2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles $[I_2, I_4]$ and store information.

Dynamic data structure (DDS) implementation in the DIRECT

- 0 Iter.: Evaluate hyper-rectangle at the center point and store information.
- 1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle $[I_1]$ and store information.
- 2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles $[I_2, I_4]$ and store information.

3 Iter.:

1	3	<i>I</i> ₁	<i>I</i> 8	<i>I</i> 4
		<i>I</i> 5	I 9	<i>I</i> ₁₀
		<i>I</i> 6		<i>I</i> ₁₁
		I ₇		
		<i>I</i> ₂		

Vilnius University

Institute of Data Science and Digital Technologies

POH selection in SDS (left) and DDS (right) implementation DIRECT

Vilnius University

Institute of Data Science and Digital Technologies

Static data storage vs dynamic data storage

Institute of Data Science and Digital Technologies

Design challenges of parallel DIRECT-type algorithms

Main steps of the DIRECT-GLCe algorithm

Initialization. Normalize the search space D to be the unit hyper-rectangle \overline{D} . Evaluate objective f (which also includes evaluation of an auxiliary function) at the center point $\mathbf{x}^c \in \overline{D}$. Set $f_{\min} = f(\mathbf{x}^c)$, $\mathbf{x}_{\min} = \mathbf{x}^c$, and initialize algorithmic performance measures and stopping criteria.

while stopping criteria are not satisfied do

Selection. *Identify* the sets G and L of potentially optimal hyper-rectangles (subregions of \overline{D}) using enhanced global and local selection procedures accordingly, and take the unique union of these two sets $P = G \cup L$.

Sampling. For each hyper-rectangle $j \in P$ sample it (using the same strategy as in original DIRECT) and *evaluate* objective (and auxiliary) functions at the centers of new hyper-rectangles. Update $f_{\min}, \mathbf{x}_{\min}$, and algorithmic performance measures. **Subdivision**. For each hyper-rectangle $j \in P$ subdivide (trisect), update partitioned

search space information and stopping criteria.

Return $f_{\min}, \mathbf{x}_{\min}$, and algorithmic performance measures.

Vilnius University

Institute of Data Science and Digital Technologies

Design challenges of parallel DIRECT-type algorithms

Vilnius University

Institute of Data Science and Digital Technologies

Design challenges of parallel DIRECT-type algorithms

2019/09/08

Vilnius University

Institute of Data Science and Digital Technologies

Parallel scheme of pDIRECT-GLce

- Select POH
- Send instructions to the workers
- Collect results from the workers
- Check termination condition

Share jobs equaly and execute

Vilnius University

Institute of Data Science and Digital Technologies

Numerical investigation

Problem	dimension	Type of function	Number of constrains	Type of constrains	р
G19	15	nonlinear	36	nonlinear inequality	0.0204%
G20	24	nonlinear	18	nonlinear inequality, nonlinear equality	0.0000%
G22	22	linear	20	nonlinear inequality, nonlinear equality	0.0204%
Michalewicz	10,100,150	-	-	box constraints	-
\mathbf{p} - estimated ratio between the feasible region and the search space					

Table: Test problems

Table: All the simulations were runed on 1 computer:

Product Collection Processor Number	8th Generation Intel $\ensuremath{\mathbb{R}}$ Core $\ensuremath{^{TM}}$ i7 Processors i7-8750H
# of Cores	6
# of Threads	12
Processor Base Frequency	2.20 GHz
Max Turbo Frequency	4.10 GHz
Memory	16 GB DDR4-2666 SDRAM

Vilnius University

Institute of Data Science and Digital Technologies

Speed-up ratio (left) and parallel efficiency (right) of parallel algorithms

2019/09/08

Improved DIRECT-type methods

Vilnius University

Institute of Data Science and Digital Technologies

Speed-up ratio (left) and parallel efficiency (right) of parallel algorithms

2019/09/08

Improved DIRECT-type methods

Vilnius University

Institute of Data Science and Digital Technologies

Speed-up ratio (left) and parallel efficiency (right) of parallel algorithms

Vilnius University

Institute of Data Science and Digital Technologies

Speedup ratio of pDIRECT-GLce in (1-300) iterations

Using 6 cores

Conclusions I

Modifications and improvements have been proposed for both DIRECT-type cases: for box and general constrained optimization problems:

- Improved potential optimal rectangles selection procedure. Comparing to original DIRECT, problems insolvability reduced by 39%, and the average number of function evaluations by 29%;
- Selection of potential optimal rectangles enlarged by candidates nearest to f_{min}. Comparing to DIRECT, problems unsolvability reduced by 69%, and number of function evaluations by 52%;
- New penalty function automatically generates the necessary penalty parameters to the DIRECT algorithm for problems with constraints;
- Added strategy for handling the cases with infeasible initial regions situation when initial sampling points are infeasible and finding at least one feasible point is costly;
- Comparing to DIRECT-L1, problems unsolvability reduced by 82%, and number of function evaluations by 70%;

Conclusions II

Vilnius University

Institute of Data Science and Digital Technologies

- The DIRECT-GLc algorithm has the most wins, and it can solve about 50% of the problems with the highest efficiency;
- Solving more challenging problems (with nonlinear constraints and n ≥ 4) DIRECT-GLce outperforms other algorithms, and the performance difference increases as the performance ratio increases;
- Implementation based on dynamic data structure requires 98.6 % less time compared to static versions;
- Proposed two versions: single-start based pDIRECT-GLce and multi-start based Aggressive pDIRECT;

Vilnius University

Institute of Data Science and Digital Technologies

Thank you!