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Motivation

Algorithm: direct (dividing rectangles)

Jones, D. R., Perttunen, C. D., and Stuckman, B. E. (1993).
Lipschitzian optimization without the Lipschitz constant.
Journal of Optimization Theory and Applications, 79(1):157–181.

Popular Google scholar: 1918 citations (2019/09/08)

Simple and has only one algorithmic parameter ε that needs to be adjusted
to make the algorithm work well on a given problem.

Converge to the global optimum, if the objective function is continuous or at
least continuous in the neighbourhood of a global optimum.

Suitable for black-box optimization.

1 Box constraints.
2 General constrains.
3 Hidden constraints.
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Outline

DIRECT for box-constrained global optimization
Global Optimization Problem
DIRECT algorithm main steps
DIRECT, DIRECT-G, DIRECT-L
DIRECT-GL
Numerical investigation

DIRECT for general constrained global optimization
Global Optimization Problem
Exact L1 penalty function
DIRECT-GLc
DIRECT-GLce
Numerical investigation

Accelerating DIRECT algorithms
Data structures
Parallel scheme of pDIRECT-GLce
Numerical investigation
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Global (Lipschitz) Optimization Problem (GOP)

We consider a box-constrained
(GOP) of the form:

min f (x), f : Rn → R
s.t. x ∈ D : l ≤ x ≤ u,

x, l,u ∈ Rn.

min
x∈[−3,6]

0.25x + sin(x)

-3 6

−2

−1

1

2

xglob xloc

Objective function f satisfies the Lipschitz condition

|f (x)− f (y)| ≤ L‖x− y‖, x, y ∈ D, 0 < L <∞,

with unknown Lipschitz constant L.
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DIRECT algorithm: main steps

1 step: Scale D→ D = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n}

2 step: Evaluate f at - the center point c ∈ D
3 step: Identify (and select) - potentially optimal hyper-rectangles

4 step: Sample f at the points - c ± δ (where δ = 1/3 maximal side
length)

and divide (trisect) along all dimensions with the maximum
side length.

Repeat: 3-4 Steps until satisfied some stopping criteria.
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Schemes for selection of potentially optimal
hyper-rectangles
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Potentially optimal hyper-rectangles (POH) in DIRECT

Definition 1 (Potentially optimal
hyper-rectangles)

Let ci denote the center sampling point and δi
be a measure (distance, size) of the
hyper-rectangle D i

k . Let ε > 0 be a positive
constant and fmin be the best currently known
value of the objective function. A
hyper-rectangle D j

k , j ∈ Ik is said to be
potentially optimal if there exists some
rate-of-change (Lipschitz) constant L̃ > 0 such
that

f (cj)− L̃δj ≤ f (ci )− L̃δi , ∀i ∈ Ik , (1)

f (cj)− L̃δj ≤ fmin − ε|fmin|, (2)

where the measure of the hyper-rectangle is

δi =
1

2
‖bi − ai‖2. (3)

Geometric interpretation on Shekel 5
test problem in the fifth iteration
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New selection strategy for POH in proposed DIRECT-G

Definition 2 (Potentially optimal
hyper-rectangles)

• Step 1 Find an index j ∈ Ik and a
corresponding hyper-rectangle D j

k , such
that

D
j
k

= arg max
j
{l j

k
: j = arg min

i∈Ik : lmin
k
≤l i

k
≤lmax

k

{f (ci )}}.

(4)

• Step 2 Set lmin
k = l jk + 1. If l jk ≤ lmax

k

repeat from Step 1; otherwise terminate.

Geometric interpretation on Shekel 5
test problem in the fifth iteration
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New selection strategy for POH in proposed DIRECT-L

Definition 3 (Potentially optimal
hyper-rectangles)

• Step 1 At each iteration k, evaluate the
Euclidean distance from the current
minimum point (xmin) to other sampled
points:

d(xmin, ci ) =

√√√√ n∑
j=1

(xmin
j − c ij )

2 (5)

• Step 2 Apply the procedure described in
Definition 3 in (4) using distances
d(xmin, ci ) instead of objective function
values.

Geometric interpretation on Shekel 5
test problem in the fifth iteration
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Pseudo code of the DIRECT-GL algorithm

1 step: Scale D→ D = {x ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n}.
2 step: Sample the center point c1 ∈ D of first hyper-rectangle and evaluate f (c1). Initialize

fmin = f (c1), xminc1 set (function evaluation counter) m = 1 and (iteration counter)
k = 1. Set J1 = 1.

3 step: Identify the index set J1
k ⊆ Ik of potentially optimal hyper-rectangles using Definition 2.

(DIRECT-G selection procedure)

4 step: Subdivide (trisect) all hyper-rectangles from J1
k and update Ik. Evaluate f at the centers

of new hyper-rectangles. Update fmin, xmin and m.

5 step: Identify the index set J1
k ⊆ Ik of potentially optimal hyper-rectangles using Definition 3.

(DIRECT-L selection procedure)

6 step: Subdivide (trisect) all hyper-rectangles from J1
k and update Ik. Evaluate f at the centers

of new hyper-rectangles. Update fmin, xmin and m.

Repeat: Set k = k + 1. If stopping criteria are met, stop; otherwise go to step 3.

Stripinis, L., Paulavičius, R., Žilinskas J. (2017).
Improved scheme for selection of potentially optimal hyper-rectangles in DIRECT.
Optimization Letters 12(7), 1699–1712. DOI 10.1007/s11590-017-1228-4
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Test problems and stopping conditions

• Since all the global minima f ∗ are known for all Hedar test problems
in advance, investigated algorithms were stopped either when the
point x̄ was generated such that the percent error

pe = 100%×

{
f (x̄)−f ∗
|f ∗| , f ∗ 6= 0,

f (x̄), f ∗ = 0,
(6)

is smaller than the tolerance value εpe, or when the number of
function evaluations exceeds the prescribed limit of 106.

• In our investigation, four different values for εpe were considered:
10−2, 10−4, 10−6, 10−8.

Hedar, A. (2005).
Test functions for unconstrained global optimization.
http://www-optima.amp.i.kyoto-u.ac.jp/ member/student/hedar/Hedar files/TestGO.htm.
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Unsolved test problems and average of function evaluations

Table: Unsolved test problems

Alg./εpe 10−2 10−4 10−6 10−8 Total

DIRECT 9/54 11/54 18/54 26/54 64/216
DIRECT-G 8/54 9/54 10/54 12/54 39/216
DIRECT-L 11/54 13/54 13/54 15/54 52/216
DIRECT-GL 4/54 4/54 6/54 6/54 20/216

Table: Average of function evaluations

Alg./εpe 10−2 10−4 10−6 10−8

DIRECT 184,591 236,891 369,800 493,577
DIRECT-G 199,253 211,822 235,896 263,322
DIRECT-L 226,023 265,436 277,382 298,068
DIRECT-GL 114,887 150,622 170,131 186,799
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Average of function evaluations solving unimodal and multimodal test problems

Table: Average of function evaluations for unimodal test problems

Alg./εpe 10−2 10−4 10−6 10−8

DIRECT 115,099 126,330 170,648 176,480
DIRECT-G 195,439 199,961 207,523 220,482
DIRECT-L 373,655 374,537 376,095 378,051
DIRECT-GL 194,300 202,406 214,502 228,328

Table: Average of function evaluations for multimodal test problems

Alg./εpe 10−2 10−4 10−6 10−8

DIRECT 208,913 275,588 439,503 604,561
DIRECT-G 200,588 215,973 245,826 278,316
DIRECT-L 174,351 227,251 242,832 270,074
DIRECT-GL 87,092 132,498 154,601 172,263
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Average of function evaluations solving n ≤ 3 and n ≥ 4 test problems

Table: Average of function evaluations for test problems with n ≤ 3

Alg./εpe 10−2 10−4 10−6 10−8

DIRECT 2,290 3,828 25,335 262,245
DIRECT-G 15,760 15,942 16,246 16,685
DIRECT-L 1,480 1,666 1,905 2,278
DIRECT-GL 509 759 1,064 1,533

Table: Average of function evaluations for test problems with n ≥ 4

Alg./εpe 10−2 10−4 10−6 10−8

DIRECT 319,846 409,809 625,371 665,211
DIRECT-G 335,394 357,192 398,862 446,311
DIRECT-L 392,619 461,136 481,767 517,525
DIRECT-GL 199,748 261,812 295,568 324,254
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Global (Lipschitz) Optimization Problem (GOP)

We consider a general constrained
(GOP) of the form:

min f (x), f : Rn → R
s.t. x ∈ D : gi (x) ≤ 0, i = 1...m

hj(x) = 0, j = 1...r

l ≤ x ≤ u, x, l,u ∈ Rn.

min
x∈[−3,6]

0.25x + sin(x)

-3 6

−2

−1

1

2

xglob xloc

All functions f , gi , hj satisfies the Lipschitz condition

|f (x)− f (y)| ≤ L‖x− y‖, x, y ∈ D, 0 < L <∞,

with unknown Lipschitz constant L.
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Exact L1 penalty function approach

An exact L1 penalty approach is a transformation of the original
constrained problem to the form:

min
x∈D

f (x) +
m∑
i=1

max{pigi (x), 0}+
r∑

i=1

pi+m|hi (x)|, (7)

where pi - penalty parameters.

Small penalty problem
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Large penalty problem
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Constrained test problems
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Comparison of Exact L1 penalty function using different POH: our scheme vs original

Stopping conditions:

1 cond.: When the point x̄ was generated such that the percent error εpe is smaller than
the 10−2.

2 cond.: When the number of function evaluations exceeds the prescribed limit of 106.

Table: Results solving problems with general constraints

DIRECT-GL-L1 DIRECT-L1
# p=10 p=102 p=103 p=10 p=102 p=103

Aver.(overall) 516,137 418,516 312,676 636,793 682,036 705,836
Aver.(n ≤ 3) 443,498 241,614 42,175 526,485 409,504 494,361
Aver.(n ≥ 4) 580,337 547,705 520,763 705,260 879,914 853,840
Aver.(lin.cons.) 398,612 308,194 158,096 528,508 612,280 650,601
Aver.(nonlin.cons.) 692,335 558,644 520,906 764,540 752,595 754,704
U.prob.(total) 28/56 21/56 15/56 34/56 37/56 38/56
U.prob.(infes.sol.) 19/28 11/21 5/15 17/34 12/37 7/38
U.prob.(exc.fun.eval.) 9/28 10/21 10/15 17/34 25/37 31/38
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DIRECT-GLc: Case when initial point(s) is/are infeasible

Next extension for problems with constraints. Minimize sum of constraint
violations:

min
x∈D

ϕ(x), (8)

where

ϕ(x) =
m∑
i=1

max{pigi (x), 0}+
r∑

i=1

pi+m|hi (x)|, (9)

until a feasible point x ∈ D is found, i.e., such that (9) is zero. Penalty
parameters pi are simply set to 1.
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DIRECT-GLc: Find at least one feasible point

Table: The number of function evaluations needed by algorithms to find a feasible
point

DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc
# p=10 p=102 p=103 p=10 p=102 p=103

G01 4,340 4,036 4,340 4,626 4,244 4,776 4,050
G03 4,037 3,393 1,413 > 106 > 106 > 106 1,381
G05 8,635 5,507 6,331 > 106 > 106 > 106 6,329
G06 1,431 575 122 1,521 547 112 102
G07 847 1,318 1,660 449 531 813 927
G10 > 106 > 106 > 106 > 106 > 106 > 106 3,394
NASA speed
reducer design
problem

> 106 > 106 5,019 99.515 77,051 5,561 167

P01 > 106 2,373 5,009 > 106 5,273 8,021 4,165
Reactor net-
work design

5,506 5,484 5,484 45,558 33,026 34,968 5,418
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DIRECT-GLc: Penalizing objective values obtained at infeasible points

By the second extension, we transform problem (7) to (10):

min
x∈D

f (x) + ξ(x, f feasmin ),

ξ(x, f feasmin ) =

{
0, x ∈ D feas

ϕ(x) + ∆, otherwise,

(10)

where f feasmin - current best feasible solution and Dfeas is set of points which
satisfies constraints. ∆ = |f (x)− f feasmin |, which is equal to absolute value
of the difference between the best feasible function value found so far f feasmin

and the objective value at an infeasible center point.
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Comparison of DIRECT-GLc with previous versions

Stopping conditions:

1 cond.: When the point x̄ was generated such that the percent error εpe is smaller than
the 10−2.

2 cond.: When the number of function evaluations exceeds the prescribed limit of 106.

Table: Results solving problems with general constraints

DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc
# p=103 p=10

Aver.(overall) 312,676 636,793 240,727
Aver.(n ≤ 3) 42,175 526,485 2,283
Aver.(n ≥ 4) 520,763 705,260 433,021
Aver.(lin.cons.) 158,096 528,508 125,135
Aver.(nonlin.cons.) 520,906 764,540 406,577
U.prob.(total) 15/56 34/56 12/56
U.prob.(infes.sol.) 5/15 17/34 0/12
U.prob.(exc.fun.eval.) 10/15 17/34 12/12
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DIRECT-GLce: adding small tolerance for constraints

By third extension we update problem (10) to form (11):

min
x∈D

f (x) + ξ̃(x, f feasmin ),

ξ̃(x, f feasmin ) =


0, x ∈ D feas

0, x ∈ D inf
εcons

ϕ(x) + ∆, otherwise,

(11)

where D inf
εcons = {x : f (x) ≤ f feasmin , 0 <

m∑
i=1

max{gi (x), 0} ≤ εcons, x ∈ D}

and εcons is a small tolerance for constraint function sum, which
automatically varies during the optimization process.

Stripinis, L., Paulavičius, R., Žilinskas J. (2019).
Penalty functions and two-step selection procedure based DIRECT-type algorithm for
constrained global optimization.
Structural and Multidisciplinary Optimization 59(6),2155–2175. DOI
10.1007/s00158-018-2181-2
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Geometric interpretation of DIRECT-GLce algorithm
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Comparison of DIRECT-GLce with previous versions

Stopping conditions:

1 cond.: When the point x̄ was generated such that the percent error εpe is smaller than
the 10−2.

2 cond.: When the number of function evaluations exceeds the prescribed limit of 106.

Table: Results solving problems with general constraints

DIRECT-GL-L1 DIRECT-L1 DIRECT-GLc DIRECT-GLce
# p=103 p=10

Aver.(overall) 312,676 636,793 240,727 153,341
Aver.(n ≤ 3) 42,175 526,485 2,283 4,331
Aver.(n ≥ 4) 520,763 705,260 433,021 273,510
Aver.(lin.cons.) 158,096 528,508 125,135 78,962
Aver.(nonlin.cons.) 520,906 764,540 406,577 260,058
U.prob.(total) 15/56 34/56 12/56 3/56
U.prob.(infes.sol.) 5/15 17/34 0/12 0/3
U.prob.(exc.fun.eval.) 10/15 17/34 12/12 3/3
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Comparison with other DIRECT-type algorithms

Steps DIRECT-L1 eDIRECTc Filter Direct DIRECT-GLce

Selection of po-
tentially optimal
hyper-rectangles
(POH)

Original DIRECT
strategy

Novel DIRECT-type
constraint-handling
technique that separ-
ately handles feasible
and infeasible cells

Modified strategy, uses
three sets: one from
feasible, one from in-
feasible non-dominated
and one from infeasible
dominated points

Uses two step selec-
tion procedure from
DIRECT-GL algorithm

Partitioning
scheme

Original DIRECT tri-
section strategy

Based on Voronoi dia-
grams for partition the
design space in Voronoi
cells

Trisection strategy us-
ing the rules of “prefer-
ence point” and “pref-
erence order” described
in Definition 5 in their
paper

Original DIRECT tri-
section strategy

Local minimization
procedure

– In MATLAB implementa-
tion uses fmincon

– Only in the version:
DIRECT-GLce+

Input parameters Balance parameter ε,
penalty parameters pi

Balance parameter ε,
allowed equality con-
straints violation εϕ

Balance parameter ε,
filter control paramet-
ers

Allowed equality con-
straints violation εϕ

M. F. P. Costa and A. M. A. C. Rocha and E. M. G. P. Fernandes (2017).

Filter-based direct method for constrained global optimization.
Journal of Global Optimization in press (2017). DOI 10.1007/s10898-017-0596-8.

Liu, H., Xu, S., Chen, X., Wang, X., Ma, Q. (2017).

Constrained global optimization via a direct-type constraint-handling technique and an adaptive metamodeling strategy.
Structural and Multidisciplinary Optimization 55(1), 155–177 (2017). DOI 10.1007/s00158-016-1482-6 .
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Comparative analysis with Filter DIRECT

Table: Comparison between algorithms on 20 test problems

Filter DIRECT DIRECT-GLce

Label fevl fmin fevl fmin

P01 25, 425 0.398895 117, 367 0.029367
P02(a) 697, 169 −22.44495 200, 000 −397.147651
P02(b) 421, 197 53.68674 200, 000 −397.146850
P02(c) 724, 337 −38.79484 200, 000 −701.483390
P02(d) 16, 715 −399.96613 54, 769 −399.966130
P03(a) 1, 109, 995 −0.38317 117, 665 −0.388737
P03(b) 347 −0.38888 985 −0.388736
P04 543 −6.66621 1, 949 −6.666209
P05 1, 009 201.159343 819 201.159319
P06 1, 323 376.300244 1, 791 376.306243
P07 1, 417 −2.828227 2, 705 −2.828227
P08 883 −118.700976 1, 947 −118.689820
P09 2, 203 −13.401764 8, 271 −13.401411
P10 587 0.741833 2, 455 0.741833
P11 5 −0.500000 11 −0.500000
P12 6665 −16.738797 23 −16.738069
P13 10, 583 195.339906 41, 431 189.357806
P14 1, 967 −4.513963 9, 409 −4.513921
P15 105 0.000000 181 0.000000
P16 151 0.705001 97 0.704964

Average 151, 131 48, 094
# of unsolved 5 3
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Comparative analysis with eDIRECT-C

Table: Comparison of different algorithms for 13 test problems

# Criteria eDIRECT-C DIRECT-GLce DIRECT-GLce+min

G01 fmin −14.9998 −14.9991 −15.0000
fevl 147.4 787, 405 4, 153

G02 fmin −0.2480 −0.2246 −0.3148

fevl > 1, 000.0 > 106 > 106

G03 fmin −0.9989 −1.0004 −1.0004
fevl 145.4 251, 547 251, 547

G04 fmin −30, 665.5385 −30, 663.5708 −30, 665.5387
fevl 64.6 21, 355 25

G05 fmin 5, 145.8149 5126.5089 5, 126.4967
fevl 412.80 6, 861 5, 629

G06 fmin −6, 961.8137 −6, 961.1798 −6, 961.8139
fevl 34.8 6, 017 129

G07 fmin 24.3062 24.3332 24.3062

fevl 152.4 > 106 1, 161
G08 fmin −0.095822 −0.095818 −0.095825

fevl 154.2 1, 507 115
G09 fmin 785.6795 680.6928 680.6301

fevl > 1, 000.0 89, 301 41
G10 fmin 7, 049.2484 7, 049.8749 7, 049.2480

fevl 104.8 561, 857 3, 607
G11 fmin 0.7499 0.7499 0.7499

fevl 33.4 1, 929 447
G12 fmin −1.0000 −0.9999 −1.0000

fevl 52.0 85 17
G13 fmin 0.6472 0.05394 0.05394

fevl > 1, 000.0 458, 239 100, 171

U.pr. 5 2 1
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Comparative analysis with eDIRECT-C

Table: Results of different algorithms for engineering problems

Algorithm Solution point x∗ fmin fevl

NASA speed reducer design problem

eDIRECTc 3.50000, 0.70000, 17.00000, 7.30000, 7.71532, 3.35022, 5.28665 2994.4711a 118
DIRECT-GLce 3.50034, 0.70000, 17.00002, 7.30007, 7.80003, 3.35046, 5.28673 2996.5498 110,387
DIRECT-GLce+min 3.50000, 0.70000, 17.00000, 7.30000, 7.80000, 3.35021, 5.28668 2996.3481 233

Pressure vessel design problem

eDIRECTc 1.00000, 0.62500, 51.81347, 84.57855 7006.7816a 412
DIRECT-GLce 1.10007, 0.62503, 56.99779, 50.99159 7164.3701 129,097
DIRECT-GLce+min 1.100000, 0.625000, 56.99481, 51.00125 7163.7395 73

Tension/compression spring design problem

eDIRECTc 0.05169, 0.35674, 11.28819 0.012666a 292
DIRECT-GLce 0.05183279987, 0.36018518518, 11.1025880577 0.012679 20,845
DIRECT-GLce+min 0.05169590656, 0.35688327343, 11.2933789329 0.012678 11

Three-bar truss design problem

eDIRECTc 0.78868, 0.40825 263.8958 26
DIRECT-GLce 0.78395, 0.42181 263.9158 1,331
DIRECT-GLce+min 0.78868, 0.40825 263.8958 11

a result is outside the feasible region
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Static data structure (SDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle [I1] and store
information.

2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles [I2,I4] and store
information.

3 Iter.: ....
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1
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I1
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Dynamic data structure (DDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle [I1] and store
information.

2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles [I2,I4] and store
information.

3 Iter.: ....

0 0.5 1

0

0.5

1

I1

I1

Linas Stripinis 2019/09/08 Improved DIRECT-type methods 32 / 46



DIRECT for box-constrained global optimization
DIRECT for general constrained global optimization

Accelerating DIRECT algorithms

Vilnius University
Institute of Data Science and Digital Technologies

Dynamic data structure (DDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle [I1] and store
information.

2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles [I2,I4] and store
information.

3 Iter.: ....

0 0.5 1

0

0.5

1

I1

I4

I3I2

I5

��I1 I2

I3

I1

I4

I5

Linas Stripinis 2019/09/08 Improved DIRECT-type methods 32 / 46



DIRECT for box-constrained global optimization
DIRECT for general constrained global optimization

Accelerating DIRECT algorithms

Vilnius University
Institute of Data Science and Digital Technologies

Dynamic data structure (DDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle [I1] and store
information.

2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles [I2,I4] and store
information.

3 Iter.: ....

0 0.5 1

0

0.5

1

I1 I3I2

I5I7

I6 I9I8

��I2

I3

I1

��I4

I5

I6

I7

I2

I8

I9

I4

I10

I11

Linas Stripinis 2019/09/08 Improved DIRECT-type methods 32 / 46



DIRECT for box-constrained global optimization
DIRECT for general constrained global optimization

Accelerating DIRECT algorithms

Vilnius University
Institute of Data Science and Digital Technologies

Dynamic data structure (DDS) implementation in the DIRECT

0 Iter.: Evaluate hyper-rectangle at the center point and store information.

1 Iter.: Subdivide (trisect) potentially optimal hyper-rectangle [I1] and store
information.

2 Iter.: Subdivide (trisect) potentially optimal hyper-rectangles [I2,I4] and store
information.

3 Iter.: ....

0 0.5 1

0

0.5

1

I1 I3I2

I5I7

I6 I9I8

I3 I1

I5

I6

I7

I2

I8

I9

I4

I10

I11

Linas Stripinis 2019/09/08 Improved DIRECT-type methods 32 / 46



DIRECT for box-constrained global optimization
DIRECT for general constrained global optimization

Accelerating DIRECT algorithms

Vilnius University
Institute of Data Science and Digital Technologies

POH selection in SDS (left) and DDS (right) implementation DIRECT
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Static data storage vs dynamic data storage
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Problem dimension Type of function Number of constrains Type of constrains p

G19 15 nonlinear 5 nonlinear inequality 33.4761%

p - estimated ratio between the feasible region and the search space
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Design challenges of parallel DIRECT-type algorithms

Main steps of the DIRECT-GLCe algorithm

Initialization. Normalize the search space D to be the unit hyper-rectangle D̄. Evaluate
objective f (which also includes evaluation of an auxiliary function) at the center point
xc ∈ D̄. Set fmin = f (xc), xmin = xc , and initialize algorithmic performance measures
and stopping criteria.
while stopping criteria are not satisfied do

Selection. Identify the sets G and L of potentially optimal hyper-rectangles
(subregions of D̄) using enhanced global and local selection procedures accordingly,
and take the unique union of these two sets P = G ∪ L.
Sampling. For each hyper-rectangle j ∈ P sample it (using the same strategy as in
original DIRECT) and evaluate objective (and auxiliary) functions at the centers of
new hyper-rectangles. Update fmin, xmin, and algorithmic performance measures.
Subdivision. For each hyper-rectangle j ∈ P subdivide (trisect), update partitioned
search space information and stopping criteria.

Return fmin, xmin, and algorithmic performance measures.
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Design challenges of parallel DIRECT-type algorithms
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Design challenges of parallel DIRECT-type algorithms
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Parallel scheme of pDIRECT-GLce

MASTER M

W1 W2 W3 · · · Wk

Shared memory, Interconnection network

• Select POH

• Send instructions to the workers

• Collect results from the workers

• Check termination condition

Share jobs equaly and execute
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Numerical investigation

Table: Test problems

Problem dimension Type of function Number of constrains Type of constrains p

G19 15 nonlinear 36 nonlinear inequality 0.0204%
G20 24 nonlinear 18 nonlinear inequality,

nonlinear equality
0.0000%

G22 22 linear 20 nonlinear inequality,
nonlinear equality

0.0204%

Michalewicz 10, 100, 150 - - box constraints -

p - estimated ratio between the feasible region and the search space

Table: All the simulations were runed on 1 computer:

Product Collection 8th Generation Intel R© CoreTM i7 Processors
Processor Number i7-8750H
# of Cores 6
# of Threads 12
Processor Base Frequency 2.20 GHz
Max Turbo Frequency 4.10 GHz
Memory 16 GB DDR4-2666 SDRAM
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Speed-up ratio (left) and parallel efficiency (right) of parallel algorithms
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Speed-up ratio (left) and parallel efficiency (right) of parallel algorithms
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Speed-up ratio (left) and parallel efficiency (right) of parallel algorithms
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Speedup ratio of pDIRECT-GLce in (1-300) iterations
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Conclusions I

Modifications and improvements have been proposed for both DIRECT-type cases: for
box and general constrained optimization problems:

• Improved potential optimal rectangles selection procedure. Comparing to original
DIRECT, problems insolvability reduced by 39%, and the average number of
function evaluations by 29%;

• Selection of potential optimal rectangles enlarged by candidates nearest to fmin.
Comparing to DIRECT, problems unsolvability reduced by 69%, and number of
function evaluations by 52%;

• New penalty function automatically generates the necessary penalty parameters to
the DIRECT algorithm for problems with constraints;

• Added strategy for handling the cases with infeasible initial regions - situation
when initial sampling points are infeasible and finding at least one feasible point is
costly;

• Comparing to DIRECT-L1, problems unsolvability reduced by 82%, and number
of function evaluations by 70%;
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Conclusions II

• The DIRECT-GLc algorithm has the most wins, and it can solve about 50% of the
problems with the highest efficiency;

• Solving more challenging problems (with nonlinear constraints and n ≥ 4)
DIRECT-GLce outperforms other algorithms, and the performance difference
increases as the performance ratio increases;

• Implementation based on dynamic data structure requires 98.6 % less time
compared to static versions;

• Proposed two versions: single-start based pDIRECT-GLce and multi-start based
Aggressive pDIRECT;
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Thank you!
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