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A BASIC MODEL OF INFLUENCE ON A NETWORK 
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STRONG SUBGROUPS AND SATELLITES 

 

 

An influence digraph contains  

two types of strong components:  

those which belong to the vertex base of the condensation  

of this digraph and those which do not.  

The strong components of the first type are called the strong 

subgroups, and other vertices are satellites.  

 

The respective algorithm is implemented by standard 

procedures of the R programming language. 



Opinions 

 

The initial opinions for all vertices are given:  

x0 = (x1
0,...,xn

0) 

The [natural] dynamics of opinions  

is determined by the rule  

 

                                                                                         (1) 

 

 

A common stable final opinion of a strong subgroup:  

 

                                                                                       (2) 

A stable final opinion of the j-th satellite:   

 

                                                                                     (3) 

 

The respective original algorithm is implemented  

by the R programming language. 
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THE PRINCIPAL IDEA 

 

So, all final opinions are determined only by 

the initial opinions of the members of the 

strong subgroups. 

 

Thus, it is assumed to be rational for all 

control agents to exert their influence only to 

the members of strong subgroups (opinion 

leaders) which are determined in the stage   

of analysis of the network. 

 

 

 

 

 

 

 

 

 

 



OPTIMAL CONTROL: PROBLEM FORMULATION 
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Here t
jx - an opinion of the j-th agent in the instant t; 

t
ju  - a control impact to the j-th agent; 

ija - coefficient of interaction between i-th and j-th agents; 

jb  - coefficient of the efficiency of impact to the j-th 

agent; 

n  - a total number of the target audience; 

m  - a number of the members of strong subgroups; 

R  - a marketing budget. 

 

This is a discrete optimal control model with nonlinear 

dynamics. It was investigated by means of computer 

simulation. 

 



COMPUTER SIMULATION EXPERIMENTS 

 

Three model examples (15, 20, 100 vertices). 

 

Scenarios of impact: 

1. To all agents 

2. To the members of strong subgroups only 

 

 

Is the second variant sufficient? 

 

 

 

 

 

 

 

 

 

 

 



MODEL EXAMPLE 

 

R = 60 000                         (budget) 

T= 200, 500, 20000           (number of steps) 

n =15                                 (total  number of agents) 

x0=(500, 900, 500, 400, 400, 500, 800, 500, 600, 400, 100, 200,200, 300, 500). 

 
uj = R/(Tn) 

 

 T=200 T=500 T=20000 
To all agents x1=...=x4=1794; 

x5=1595; 
x6=x7=x8=1494; 
x9=1569; 
x10=...=x15=1719 
 

J=283 253.3  

x1=...=x4=2314; 
x5=2114; 
x6=x7=x8=2014; 
x9=2089; 
x10=...=x15=2239 
 

J= 272 897,1 

x1=...=x4=29184; 
x5=28984; 
x6=x7=x8=28884; 
x9=28959; 
x10=...=x15=29109 
 

J= 251 515,4  
To strong 
subgroups only 

x1=x2=2623; 
x3=2562; x4=2545; 
x5=2394; 
x6=x7=x8=2632; 
x9=2374; x10=2494; 
x11=2485; x12=2468; 
x13=2477; x14=2442; 
x15=2451 
 
 

J= 307 121,9  

x1=3633; x2=3639; 
x3=3595; x4=3584; 
x5=3415; 
x6=x7=x8=3339; 
x9=3393; x10=3524; 
x11=3518; x12=3507; 
x13=3513; x14=3491; 
x15=3497 
 
 

J= 288 059,9  

x1=55612; x2=55672; 
x3=x4=55670; 
x5=55471; 
x6=x7=x8=55372; 
x9=55466; 
x10=x11=55595; 
x12=55594; 
x13=55595; 
x14=x15=55594 
 

J= 252 273  



QUALITATIVELY REPRESENTATIVE SCENARIOS 
(Ougolnitsky, Usov, 2018) 

 

},...,{ 21 muuuQRS   is a QRS set in the optimal control problem with precision  if: 

(a) for any two elements of this set QRSuu ji ,  

 || )()( ji JJ ;                                                                                                         (7) 

(b) for any element QRSu l   there is QRSu j  such that  

 || )()( jl JJ .                                                                                                         (8) 

Check that T = {200,500, 200000} is a QRS set. 

Step T Payoff  J 

200 2 937 211 

500 2 917 487  

1000 2 906 170 

20000 2 883 652 

40000 2 881 675 

60000 2 880 795 

 80000 2 880 269 

100000 2 879 910 

120000 2 879 645 

140000 2 879 438 

160000 2 879 272 

180000 2 879 134 

200000 2 879 017 

 

Let  = 19000. Condition (7): 

 19724|| )500()200( JJ  

 58194|| )200000()200( JJ  

 38470|| )200000()500( JJ  







 

Condition (8): 

 11317|| )500()1000( JJ  

 4635|| )200000()20000( JJ  

 2658|| )200000()40000( JJ  

 1778|| )200000()60000( JJ  

 1252|| )200000()80000( JJ  

 893|| )200000()100000( JJ  

 628|| )200000()120000( JJ  

 421|| )200000()140000( JJ  

 255|| )200000()160000( JJ  

 117|| )200000()180000( JJ  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A MODEL EXAMPLE FOR GAMES 

 

 

  



STATIC GAME WITH INDEPENDENT PLAYERS 

 

The objective is to increase the final opinions of the 

members of the target audience. The firms exert influence to the 

initial opinions of some members of the strong subgroups.  

 

Each k-th firm solves the following problem: 

      0 : , , 11 1
max

i

ik
j

nr i
k ij

u h i j ki j
J w x

 
   ,                                       

       with constraints 

        0 0
1 1

, ,
in mi i il

i j j j
j l

x w x u h i j l
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 
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,                                                
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1 1

, ,
i pnr ik

kj
i j

u h i j k R
 

      
, 1,2, ,k m  ,                                       

 
0 0
ik
ju  , 1 i r  , 1 ij n  , 1 k m  .                                             

Here ix - an opinion of the i-th agent; 

 i
kw – a component of the stationary vector of the Markov chain         

with the transitive matrix  T
iA  

 
0
ik
ju – a marketing impact to the initial opinion of the j-th member        

of  the i-th  strong subgroup by the k-th firm; 

in  – a total number of the i-th strong subgroup; 

 , , 1h i j k  , if k-th firm exerts influence to the j-th agent of the i-th  

strong subgroup; 
 , , 0h i j k  , otherwise; 

kR  - the marketing budget of the k -th firm.  



STATIC GAME WITH INDEPENDENT PLAYERS 

 

The optimal controls have the form 
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The final opinions are equal to:  

      
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.                  

 

The total payoff is equal to 

     

 

1

1
0

1 1 1 , : 1
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STATIC GAME WITH COOPERATIVE PLAYERS 

 

      0 : , , 11 1
max

i

ik
j

nr i
ij

u h i j ki j
J w x R

 
    ,                                  

(now k is not fixed as above)  

 

with constraints 
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where 
1

m

k
k

R R

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STATIC GAME WITH COOPERATIVE PLAYERS 

 

The optimal controls are 
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The final opinions are equal to:  
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The total payoff is equal to 
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COMPARISON OF THE RESULTS 

 

The ratio of optimal cooperative and independent solutions is 

equal to 
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Thus,  

from one side, cooperation decreases the marketing efforts 

because there are more firms and they in fact advertize the 

same product; 

from the other side, the marketing efforts can increase 

because a joint marketing budget is greater in the case of 

cooperation. 

 

  



DIFFERENCE GAME WITH INDEPENDENT PLAYERS 

 
The objective in this model is to maximize the sum of 

opinions of the members of the target audience in the whole 

period from t=1 till t=n. The firms exert an influence in closed-

loop strategies to the current opinions of the members of the 

strong subgroups. 

 
There are N agents and m firms. Each i-th firm solves the 

following optimization problem: 

     1

1 1 1
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 
, 0

0j jx x , 1,2, ,j N  , 1,2, , 1t n  , 

     1

1 1

pn N i tt t
j ij

t j
e u x R
 

 

      
,  

    0
i t t

jju x  , 1,2, ,j N  , 1,2, ,t n  , 

where    i t t
jju x  – a control impact of the i-th firm to the j-th agent 

in the t-th time period.  

  



DIFFERENCE GAME WITH INDEPENDENT PLAYERS 

 

It is more convenient to write the problem statement and 

the solution in the matrix form. The i-th firm's problem is  

  1

1
max

n i tt t

t
X Bu


    , 

  1 i tt T tX A X Bu   
  

, 1,2, , 1t n  , 1X X , 

   0
i t

u  , 1,2, ,t n  , 

   1

1 1

pn N i tt t
j ij

t j
u x R

 

     
 

. 

The matrix B consists of m blocks (number of firms).  

Each Boolean block iB  describes the influence of the i-th firm 

and has the dimension iN m ,  

N - number of agents,  

mi - a total number of the influenced members of the strong 

subgroups.  

X – a column vector of the state variables, 

 u – a column vector of controls,  

  – a row vector of  N units,  

e   (discounting). 

  



DIFFERENCE GAME WITH INDEPENDENT PLAYERS 

 

The problem is solved recurrently. The optimal solution has the 

form 

 

 
 

1
2 2 1 1 1

2 2 1 1 1

1

1

1

i n ni p
j j j jpp mi n n p

k k k
k

R
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

      

      





. 

 

The payoff of each i-th firm 

   
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              
  

  
 

 . 

                                                                              

The total payoff is equal to 

   
2 12 1 nT T n TI A A A X
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

 

 



DIFFERENCE GAME WITH COOPERATIVE PLAYERS 

 

There are N agents and m firms. A control body 

representing all firms solves the following optimal control 

problem: 

     1
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t j i
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1

m

i
i

R R


  , 

    0
i t t

jju x  , 1,2, ,j N  , 1,2, ,i m  , 1,2, ,t n  , 

where    i t t
jju x  – an influence of the i-th firm to the j-th agent in 

the t-th time period. 

 

   

  



DIFFERENCE GAME WITH COOPERATIVE PLAYERS 

 

In the matrix form the problem is  

  1

1
max

n i tt t

t
X Bu


    , 

  1 i tt T tX A X Bu   
  

, 1,2, , 1t n  , 1X X , 

   0
i t

u  , 1,2, ,i m  , 1,2, ,t n  , 

   1

1 1 1

pn m N i tt t
jj

t i j
u x R

  

      
 

. 

where T stands for transposition, and    
1 1

pm N i t t
jj

i j
u x

 

 
   

 
 – a sum of  

controls  of all firms in the t-th period.  

 

  



DIFFERENCE GAME WITH COOPERATIVE PLAYERS 

 

The optimal solution for the n-step game is 

 
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1
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2 2 1 1 1

1 1

1 .

1

i n n p
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The total payoff is 

   
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i

i
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
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  

 . 

 

The difference between total payoffs in the cooperative and 

independent cases is equal to 
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COMPARISON OF THE RESULTS 

Lemma. When p>1 the expression (*) is non-negative. 

Proof.  Denote: 

1

p
q

p



,    

1 11 12 1

1 0 1 0

i i

p p
m mn p ps s n s s n

i j j i
j s j s
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   

   
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Then the expression (*) takes the form 
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. 

According to Holder's inequality if 1p   and 1 1
1

p q
   then 

1 1
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, 

or, what is the same, 
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p q
p

m m m q
i i i i

i i i
a b a b
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. 

Setting in Holder's inequality i ia R , i ib S  gives: 
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. 

 
 
Thus, from the point of view of the total payoff a 

cooperation is more advantageous than an independent 
behavior if the control costs are big, and vice versa, if they 
are small. 



DIFFERENTIAL GAME WITH INDEPENDENT 

PLAYERS 

 

Each i-th firm solves the problem: 

 

 
10
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t
i j

j
J e x t dt


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j
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T
t t

i ie R dt R  , 

 

where j – an index of agent,  

          i – an index of firm,  

         N – a number of agents,  

         r – a number of firms. 
 

The Hamilton-Jacobi-Bellman equation has the form: 

   
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i ii i
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j j i lju j N

V V
V x t b u x a x

xt     

    
             

       (1) 

s.t.   
1

N i t
j j i

j
u x t R


 .  

Maximization by i
ju , 1,2, ,j N  , gives 
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2
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2
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j

V
b u
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 


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where   – Lagrange multiplier, then 
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, thus 
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.                                                                (2) 

 Assume that Bellman's functions are linear  
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N
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j
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
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and write (1) as 
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Equation of the coefficients for the same degrees of x gives: 
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and 
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Rewrite the system (3) in a matrix form 

  I A       ,                                                                  (5) 

where A – an influence matrix,   – a column vector of the 

coefficients j , 1,2, ,j N  , I – a unit matrix,   – N-column of 

units. 

 The solution of (5) gives: 
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The equation (4) is solved by the method of variation of 

parameters: 
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As  
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we have 
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where  0j , 1,2, ,j N  , components of the vector  0  (see (6)). 

Now it is sufficient to solve an isoperimetric problem: 
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The Lagrange function is: 
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The Euler's equation takes the form 
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The Lagrange multiplier is found from the budget constraint: 
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The payoff of each player is equal to 
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where  0j  are components of the vector (6), 1,2, ,j N  . 

  

The substitution of the value for t
iR  in (2) gives the final form of 

the optimal solution: 
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         1,2, ,i r  ; 1,2, ,j N  . 

 

 

  



COOPERATIVE BEHAVIOR 
  

The optimal control problem 
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is solved similarly, and the optimal control has the form 
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The total cooperative payoff is equal to 
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and the total payoff in the independent case is equal to 
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COMPARISON OF INDEPENDENT  

AND COOPERATIVE SOLUTIONS 
 

Thus, we should compare the terms 
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Thus, the total payoff in the case of independent behavior is 

less or equal than in the case of cooperation. 



INEQUALITY CONSTRAINTS 
 

Now consider the problem with inequality constraints 
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t , i - the respective budget constraints.  

 

We will solve first the problem with equality constraints 
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for an arbitrary iR , 0 i iR   , and then choose the optimal value 

of iR .  

 

  

 



ANALYSIS 

We have 
1

r

i
i

  .  

 

If for the i-th firm in the case of independent behavior 
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we will say that the i-th firm has enough resources,  

otherwise the i-th firm lacks resources.  

 

Similarly, in the case of cooperative behavior if 
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we will say that all firms have enough resources,  

otherwise all firms lack resources. 

  



RESOURCES 

 

Denote: 

 

for independent behavior 

i  - a resource allocated to the i-th firm; 

 iR  - a resource used by this firm in the optimal solution; 

 

for cooperative behavior 

  - a total resource allocated to all firms 

R - a total resource used by them in the optimal point.  

 

In the case of independent behavior,  

if an i-th firm lacks resources then i iR  , and the firm's 

payoff depends monotonously on i .  

If the i-th firm has enough resources then i iR  , its payoff 

does not depend on iR , the resource is redundant, and its shadow 

price   is equal to zero.  

 

Similarly, in the case of cooperative behavior,  

if all firms lack resources then R , and the total payoff 

depends monotonously on  .  

If all firms have enough resources then R< , the total 

payoff does not depend on  , the resources are redundant, and 

the shadow price   is equal to zero. 

  

  



CONCLUSIONS FOR INEQUALITY CONSTRAINTS 

 

Four cases are possible from the point of view of resource 

allocation. 

1) All firms have enough resources and they are allocated 

such that each firm has enough resources. In this case the total 

payoff of all firms at their independent behavior is equal to 
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and it coincides with the total cooperative payoff. 

2) All firms have enough resources but they are allocated 

such that some firms lack resources. In this case, the total 

resource used by all firms with independent behavior, is less 

than the respective total resource used in cooperative behavior, 

and the total payoff of all firms for their independent behavior is 

also less than the total cooperative payoff because there is a 

monotone dependence of payoffs from resource in the interval 

of the lack of resource. 

3) All firms lack resources but some firms have enough 

resources. In this case, the total resource used by all firms with 

independent behavior, is less than the respective total resource 

used in cooperative behavior, and the total payoff of all firms for 

their independent behavior is also less than the total cooperative 

payoff. 

4) Each firm lacks resources: therefore, all firms lack 

resources too. In this case, the total payoff of all firms for their 

independent behavior is less than the total cooperative payoff 

according to the above lemma. 

 

 



MARKETING INTERPRETATION 

Model element Mathematical sense Marketing 
interpretation 

Basic agent Network node  Segment of audience 
Control agent Network node Market participants 

(firms), advertising 
agencies, mass media 

Opinion of basic 
agent 

Real value associated with 
each node (basic agent) that 
varies in time 

Agent’s monthly 
(annual) expenses on a 
firm’s products 

Trust (influence) Arc between initial and 
terminal nodes  

Word-of-mouth, other 
communications of 
agents 

Degree of trust 
of basic agent to 
another one  

Real value associated with 
each arc in a network 

Quantitative 
characteristic of trust 

Resulting 
opinion 

Limit value of opinion over 
infinite time horizon 

Stable resulting 
opinion over long 
period of time 

Strong subgroup Non-degenerate strong 
component of the network 
correspondent to an ergodic 
set of the respective Markov 
chain 

Determines its own 
resulting opinions and 
the dependent opinions 
of other agents 
(opinion leaders) 

Satellite Subset of nodes representing 
degenerate strong 
components 

Resulting opinions are 
completely determined 
by strong subgroups 

Influence on 
opinions 

Additive term of opinion 
vector (more complex cases 
are possible)  

Marketing plan 

Impact on 
degrees of trust 
(influence) 

Additive term of influence 
matrix (more complex cases 
are possible) 

Marketing plan  

Goal of control Domain in the state space of 
a network 

Range of desired 
opinions 

 

 



MARKETING INTERPRETATION 

Model 
problems 

Applications to marketing 

Network 
analysis 

1. Target audience segmentation, identification 
of strong subgroups that determine the inner 
common resulting opinions of subgroups 
members and also the individual resulting 
opinions of other agents (satellites) as a linear 
combination of resulting opinions of strong 
subgroups. 
2. Calculation of centrality, prestige and other 
characteristics of the target audience. 

Prediction  
on networks 

Calculation of resulting opinions of all agents 
without external impact. 

Optimal 
control  
on networks 

Choice of optimal marketing actions (impact) 
for the target audience by one firm 

Dynamic 
games  
on networks 
(conflict 
control) 

Choice of compromise impact on the target 
audience in the case of competition and/or 
cooperation of firms (in the latter case, taking 
into account the homeostasis conditions, e.g., 
limited consumption). 

 

  



GENERAL CONCLUSIONS 

 

1. The models of influence on networks can be extended to optimization and 

game theoretic models. In this case it is rational for all control agents to exert 

their influence only to the members of strong subgroups which are 

determined in the stage of analysis of the network (an essential economy). 

2. A system of descriptive, optimization, and game theoretic models provides  

a comprehensive analysis of social networks and their practical applications. 

For example, a marketing interpretation of the models is given. 

3. The algorithms of network analysis and calculation of the final opinions  

are implemented in R programming language and tested on model examples. 

 

4. The models of optimal control in marketing networks are studied by 

computer simulation, and the main research hypothesis was confirmed. 

5. The analytical solutions are found for the statements of a static game,          

a difference game, and a differential game with constraints in the form           

of equalities/inequalities. A special method of solution of the problem with 

inequality constraints is proposed. 

6. A comparative analysis of the solutions for the cases of independent and 

cooperative behavior of the players is made, and the marketing interpretation 

is given. 

7. In most cases the cooperation is more advantageous than the independent 

behavior. In the same time, there are some more detailed conclusions. In the 

static game, from one side, cooperation decreases the marketing efforts 

because there are more firms and they in fact advertize the same product; 

from the other side, the marketing efforts can increase because a joint 

marketing budget is greater in the case of cooperation. In the difference game, 

from the point of view of the total payoff a cooperation is more advantageous 

than an independent behavior if the control costs are big, and vice versa, if 

they are small. 

8. Some conclusions about the optimal marketing resource allocation are 

received for a differential game model. 
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